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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2340

A SURVEY OF METHODS FOR DETERMINING STABILITY
PARAMETERS OF AN ATRPIANE FROM DYNAMIC
FLIGHT MEASUREMENTS

By Harry Greenberg

SUMMARY

Various methods of reducing to stability parameter form the
response to sinusoidal and transient disturbances are discussed, using
the simplified longitudinal motion of an idealized airplane as an illus—
trative example. It is shown that there are basic limitations in the
determination of some of the stability derivatives as compared with the
transfer—function coefficients, which are certain combinations of sta—
bility derivatives directly related to the airplane response. Hence,
most of the report is concerned with methods of determining transfer—
function coefficients rather than stability derivatives.

It is shown how the method of least squares can be applied to give
the desired parameters and also the ratio of their error to that of the
basic data, The determination of these parameters and their correspond—
ing error ratios is a nonlinear problem which it is shown can be solved
by linearization using a first approximation to the unknown parameters.
A number of methods of obtaining a good first approximation, which also
involve a least squares procedure, are explained and illustrated in the
numerical examples,

Although the examples are confined to a simplified case of longi—
tudinal motion, the methods presented are applicable in general to other
more complicated types of motion.

INTRODUCTION

The scarcity of reliable data on the stability characteristics of
sircraft at transonic and supersonic speeds and the difficulties of
obtaining this information Prom wind—tunnel tests (particulerly with
regard to dynamic paremeters, such as the rotary damping derivetives),
have sccelersted interest in methods of obtaining such date from flight
tests. Also the extensive use of autometic stabilization and control
equipment and the uncertain and generally poorer dynamic—stebility
characteristics arising from the use of unconventional configurations
necessitate comprehensive and refined measurements of the stability

derivatives.
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In the past, limited information has been derived from measure—
ments of airplane characteristics in steady-straight and steady-turning
flight. Recently, frequency-response measurements to sinusoidal control
deflections have been employed to evaluste additional Gynamic—stabllity
paremeters. The brief testing period available during flights of
missiles and high—speed research airplanes has impelled consideration of
transient-response flight—testing methods and associated instrumenta—
tion. Proper testing and analysis techniques should permit evaluation
of all the stability derivatives, including the limited number which can
be evaluated from steady—flight data.

The oscillation technique was discussed by Laitone, Cornell Aero—
nautical Laboratory, in an unpublished report on dynamic flight measure—
ments in which the response of the airplane to sinusoidal elevator
deflections was measured. It was shown that the lift—curve slope,
elevator effectiveness, and damping and stiffness parameters associated
with the short—period oscillation could be determined. A more detailed
presentation of this method and an application to f£light data are given
in reference 1; similar theoretical and flight—test investigations for
the lateral motions have also been reported. The method of analysis of
reference 1 is only applicable to simple dynamical systems — that is,
systems which mathematically are similar to one with a single degree of
freedom, and is incapeble of reducing the stability parameters to the
basic stabllity derivative form.

The obvious advantage, from the standpoint of test simplicity and
time, of using the response to a step elevator input instead of the
frequency-response tests was soon realized, and the work reported in
reference 2 shows how the step—response data can be converted into the
frequency-response form., Subsequent work (reference 3) extended this
method to the response to & pulse elevator input. Another method of
analysis of response to an arbitrary elevator motion was suggested by
Loring and Jonah of Chance—Vought Aircraft Company. This method does
not require transference from the "time domain" to the "frequency
domain" as is the case with references 1 through 3, and is referred to
later in this report as the "derivative method." In this derivative
method there appears for the first time the application of the method
of least squares to obtaln the most reasonable values of airplane
parameters from redundant measurements.

Examination of the avallable literature indicates a lack of infor—
mation concerning the general methods of analysis applicable to more
complicated systems, for example, systems with more degrees of freedom
or with higher—order derivatives. The purpose of the present report is
to establish more general and rigorous methods for determining aero—
dynamic parameters from dynamic flight measurements. The following
rrincipal and basic problems are studied: the relation between the
number and type of applied forcing functions and measured responses apd
the corresponding number and type of determinable aerodynamic parameters;

various methods of converting flight data to a form suitable for
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determination of aerodynamic parameters; and the correct application of
the method of least squares to compute the aerodynamic parameters.

Although the methods presented are applicable to more complicated

systems, the examples in the present report are confined to the simpli-
fied longitudinal motions of an idealized airplane in order to facili-—
tate computations.

Lg

NOTATION
General

angle of attack, radians
angle of attack of tail, radians

in— and out—of-phase components of oscillation
d
differential operator <;§E>

elevator deflection, radians

downwash angle, radians

residual error in an equation

residual error in a real equation

residual error in an imsginary equation
acceleration due to gravity

angle of pitch, radians

pitching moment of inertia, slug—feet squared
roots of characteristic stability equation

1ift force, pounds
3L
da

3L
3%
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tall 1ift, pounds

L
v .

mass of airplane, slugs

pitching moment, foot—pounds

M
da

2
dDa.

oM
R

o
dq
o
ov

e
relative density parameter ( em  _ 2 X mass )
pSyc  density X wing area X wing chord

normal acceleration, g units

angular pitching velocity, radians per second

amplitude and phase of complex number

sum of welghted squares of residuals

time, seconds

velocity of airplane, feet per second

trim velocity of airplane, feet per second

weight of airplane, pounds

weighting factor indicating accuracy of 4 measurement, etec.

longitudinal distance between center of gravity and neutral .
point of airplane, feet

angular frequency, radians per second -
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Subscripts
c calculated
m measured
Transfer—Function Coefficients
“Mg¥pe . Ia
b damping parameter T + Ty
L
c - =0
1@ mVO
¢ Ms _ L3 Mpg
o S
Y o -y
L _
y ®oly
¢ Mo Lo Mg Is
4 IymV, I, mVg
Vo
COn Cpq —g—-
\'
Cip  (C1g = Cog) &
Vv
Cop — C 1q f—
k stiffness parameter <— ﬁ - itx._ M—S

MATHEMATICAL AND AERODYNAMIC PRELIMINARIES

In order to illustrate the types of dynamic parameters involved
and the conditions under which they may be measured, the case of longi-—
tudinal motion of an airplane will be considered. In setting up the
equations of motion, the following assumptions are made: '
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Basic Assumptions

1. Linear equations with constant coefficients

2. Measuremeni of forcing function not subject to error
3. Response measurements subject only to random errors
k. Constant airspeed and level flight

5. Aerodynamic 1lift equals aly + SLg

6. Aerodynamic moment equals oMy + Da Mpy + 4 Mg + SMg
T. Rigid alrplane

8. No unsteady 1lift effects except for downwash lag which
introduces the derivative Mpg. Only the first three of the
above assumptions are necessary in order to apply the methods
of this report; the others are made to simplify the numerical
examples given later and because they do spproximately
describe the airplane motions in the maneuvers which are con—
sidered in this report.

Equations of Motion and Statement of "Inverse"
Problem of Airplane Dynamics

Based on the gbove assumptions, the longitudinal eguations of
motion may be written

- alg — Do mVp + qQ Vg = L (1)
— aMy, — Dot Mpg, — @ Mg + Iy Dg = M (2)

The forecing functions, 1ift I and moment M, wmay be applied aero—
dynamically by deflecting an elevator, as discussed in a later sectlon
of the report, or nonaerodynamically as, for example, by releasing a
bomb or flring a gun.

Most of the applications of the mathematical theory of dynsmic
behavior of airplanes have consisted of computations of airplane
response characterisilics when the stability derlvatives such as Iy,
Mg, and Mg are assumed known. The problem comsidered in the present
report is the inverse; namely, given the airplane response in a, 4,
or n to a disturbance, to evaluate the stability derivatives of the
airplane.
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It will be proved later in this report (see section "Discussion")
that the determination of moment derivatives from flight data is subject
to certain basic theoretical limitations. There are certain combina—
tions of moment derivatives, however, which determine the behavior of
the airplane and which can be computed from the £light data. These
combinations of derivatives are called "transfer coefficients" and are
defined below. Most of this report is devoted to the determination of
these transfer coefficients.

Transfer Functions for Control Deflection Input

For this case, in which I=0Ly and M=B0Ms, the operational solu—
tion of equations (1) and (2) is

L M
- _.....8.. D + ._§ + i E
o mVo Iy mVo Iy ( )
> 3
° D2+D<—-M-‘-1-—MDC"+ L“)— ol Mo
¥ Iy mVy mVo Iy Iy
= CigDtCoq (1)
D2+bD+k
(Mo _ Is Mpa), MouIs Mo I
-_— 5
5 D2+bD+k
"~ D2+bD+k

Since the normal acceleration is often measured, it will be useful to
glve the solution

n Vo 9-Da _ Vo _Cla,D2+(Clq_COc(,)D+ch
8 g © g D2+bD+k

CopD3+C1,D+Coy
© DP+bD+k
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Quantities such as Cogy, Ciys Coq, Clq, b, and k will be called

"transPer coefficients," because they determine the transfer function
between a response and a disturbance.

It may be noted that there is a direct relation between the transfer
function and frequency response. The sinusoldal response of the airplane
to a sinusoidal disturbance of frequency w 1s obtained by substituting
i® for D 1in the corresponding transfer function. The magnitude and
phase angle of the complex number so obtained give the amplitude ratio
and phase (lead) between the response and disturbance, which are of the
same frequency.

COMPUTATION OF DYNAMIC PARAMETERS
( TRANSFER COEFFICIENTS) FROM
FLIGHT DATA

A more detailed study of the analysis procedures for reducing basic
data obtained by various flight—test methods 1s now of interest. As
previously noted, & dynamic flight test made for the purpose of measur—
ing stability and control characteristics generally consists of the
measurement of an input disturbance (such as control deflection) and the
resulting airplane response in one or more degrees of freedom. The dis—
turbance and response may be transient or may be sinusoidal motions,
with time and angular frequency, respectively, as the independent
varisble. Equations of motion are then assumed, and the assoclated
transfer coefficients and (to the extent it is possible) the stability
derivatives are evaluated by a process usually referred to as "curve
fitting." The minimum number of points required to fit a curve to the
observed data is the same, of course, as the number of assumed transfer
coefficients. A larger number of points ordinarily are obtained with
elther transient or sinusoidal tests, and the values of the stability
parameters which will fit these redundant data with the least error
should be determined. This is done by application of the principle of
least squares, which also furnishes information about the accuracy of
the parsmeter evaluations in terms of the accuracy of the basic data
(error ratio).

Principle of Ieast Squares

This principle states that the most probable values of the unknown
parameters are those for which the sum of the squares of the errors
(differences between cglculated and measured airplane motion, for
instance) is a minimum. If only one airplane response is measured, for
example, the transient pitching velocity q from +=0 to T, then the
inrerse problem of airplane dynamics is solved by finding values of
b, k, Clq and Coq such that
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2
(pac) dt

is a minimum.

If more than one airplane response is measured, for example, the
transient responses in 9, 4, and Dgq from t=0 to T, then the values
of the parameters b, k, Clq and Coq are to be determined such that

T T T
g = we\/p (Gm—ec)2 at + wq\jp (an-qc)2 dt + wbq\jp (ququc)z at
o o

o]

is a minimum. The weight w of a measurement is a number indicating
the accuracy of that measurement (as regards random errors). More
specifically, the weight is the reciprocal of the mean square error
(normi% distribution in the errors of measurement assumed, see refer—
ence .

If the frequency response (both amplitude and phase) is measured
over a range of frequencies «, then the parameters are to be deter—
mined by the condition that

S = y wr (RrRe)” + Z Wip(Purde)

is a minimum where the summation is taken over the frequencies at which
the response is measured.

The problems above are nonlinear In the umknowns Db, k, C;, and Cq.
The only practical method of solution is to linearize the problem and
iterate from a first approximation. For the case in which only one
quantity is subject to error (like the first case mentioned above) the
methods of linearization and iteration are explained in reference 4,
pages 214 and 84, respectively. The method of linearization is dis—
cussed briefly in the next section and in the appendix. The subsequent
section (which constitutes the principal part of this report) deals
with methods, most of which also involve least squares solutions,
of obtaining a good first approximation.

The idea of determining the parameters from a transient response by
linearization and iteration from a first approximstion is due to Shinbrot
of Ames Laboratory and is discussed and exploited more fully in refer—
ence 5.
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Determination of the Parameters and Their
Relative Accuracy by Linearization

To determine the parameters b, k, Clq s and Coq from g end B
measurements, it is first necessary to determine an initial approxima-—
tion (bg, kg» Cig,, and C°qo) to the parameters (e.g., by one of the

methods of the next section). Then linearization of the problem of

determining the increments in the parameters which mske S5 a minimum
gives the equations:

I
Zsijx3=si 1=1,2,3, 4
i=
where
s
S =
Y ox30x 3
and
g = os
i axi
X3 = b-bg Xp = k-kq Xg = Clq_clqo X4 = Coc_,.—(lo(10

The partial derivatives are to be computed at the values b=by, k=k,,
Clq=01q and Coq=coq « Expressiomns for Sij and Sj for the transient
o o

response and frequency response are given in the appendix.

Having obteined the increments =x3i, i1t may be necessary to repeat
the calculation using the corrected values of the parameters as & new
first approximation and so on. This, of course, will not be necessary
if a good first approximation is obtained. It appears to be worth
while, therefore, to devote some effort to obtaining a good first approx—
imetion, In the next section it is shown how the method of least squares
is used to find such an spproximatilon.

The relative accuracy or weight (reciprocal of mean square error)
of a computed parameter is obtained as shown in reference b from the
following formula:

1 cofactor of Sii

T | 814]
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A more useful indication of the accuracy of a computed parameter
for some purposes is the ratio of percentage error in the computed
parameter to the percentage error of the flight measurement. This ratio,
which may be called the error ratio, is (for g measurements)

t error in x W, max
pereen 1 . error ratio of xy = /=24 Amax
percent error in q Vx; ¥

Amax cofactor of Sii
AL .
Xy [81]

where Qmax 1s the full-scale reading of the g instrument, and Wg
is the weight of the q measurements (reciprocal of mean square error).

Methods for Obtaining a First Approximation
to the Parameters

Sinusoidal ( frequency) response.~ In this case the measurements
consist of input and response amplitudes and phase shifts between the
input and response in one or more degrees of freedom over a range of
frequencies., For example, in the case of longitudinal motion with two
degrees of freedom the transfer function between pitching velocity q
and elevator angle © has been shown to be:

q_ Cqu+Coq

5 D2+bD+k
It

8 = Bg sin wt-
and

9
5 = Rsin (wt+p) = A sin wt + B cos wt
)

then it can be shown that A+iB is the walue of the transfer function

when D=iw, This gives the equation:

A(k—?) — Bbw + i[B(k—w®)+Abw] = Cogq + Cigq wl
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Eguating real and imsginary parts gives the two equations:

Ak — Bab — Coq = Auf Real equation
Bk + Awb —~ C;._q ® = Bar Imaginary equation
If the values of A and B are known at two frequencies, then it

1s possible to set 1p four simultaneous eguations in the four unknowns

Ajk — Bimyb — Coq = Ayon2
Ak — Botob ~ Coq = Apwp®
Bak + Aymqd - cnlclq = Biun2
Bok + Asmsb - mzclq = Bowo?

where A;, Apy, By, B are values of A and B at w; and ws.

The solution of these equations gives values of b, k, Ciq> and Co
corresponding to a freguency response curve that agrees exactly wi%h the
megsured curve at the two frequencies selected. This has been called the
"method of selected points.”

A better first spproximation can be obtained at the expense of some
additional lsbor by using data obtained at more then two frequencies.
The method of least sQuares 1s used o calculate values of the parsmeters
that make ZER2 + ZET2 a minimum where ER and Er are defined by:
Ak—Bcnb—Coq — As? = Ep
Bk+Awb—Clqw—Bcn2 = EI

This leads to the following set of normal eguations:

% (B2 +A%02)b + ZBaCoq —ZA0PC1q = O

=(B2+A2)k —ZACo, —EBuCig = Z( B2uR+A%w2)
= Busb —% Ak + NCog = — 3 Aa?
= A0”b + % Buk —Z aPCaqg =% BpS

where N egquals the mumber of frequencies and the summation 1s taken
over all the frequencies at which data are obtained.
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If the phase and amplitude of the normal acceleration response to
‘sinusoidal elevator motion is measured, the coefficients of the transfer
function

C2pD24C 1, D+Coy
D2+bD+k

2
8

can be determined in a similar manner,

To illustrate the computation of a first approximation by the
method of least squares, the frequency response of an idealized airplane
to sinusoidal elevator motion was calculated and the results were used
to compute the transfer coefficients. The frequency—response points
used in the computation are shown in figure 1. Table I gives a complete
schedule of calculations of the transfer coefficients k, b, Clq, and
Coq from the pitching-response data of figure 1.

Transient response.~ Since it is much faster and easier to measure
the transient response than the frequency response of a dynamical
system, the analysis of transient responses to determine transfer coef—
ficients is of great interest. A common type of transient function, the
pulse, is shown in figure 2; some special types of input functions
(impulse, step, and ramp) are shown in figure 3. Several methods of
analysis, of varying degrees of generality, will be explained.

(1) Inspection of the transient.— If & becomes constant after
a brief transient period, b and k can be determined from the
damping and period of the oscillations (assuming that the system is
less than critically damped). If T1/2 1is the time for the free
oscillations to dsmp to half amplitude and P 1is the period, then

polte386 4 k= o.u82 + 39;;8
Ty /2 Ty /2 P

If, in addition, the steady—state value of q and the steady—state
value of 8 are known, then their ratio qm/aw is equal to Coq/k.
If the values of q, and B» are zero (as for a pulse input) then

o0
coq_foth
s at

k fo

If the input 1s a step, then
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bq
C1q = (F =0

Otherwise there is no way of determining Clq by inspection.

(2) Fourier transform.— The vector ratic of the Fourier
integral of the output to the Fourier integral of the input gives the
frequency response. That is, 1if

[ a(t)eiot gt
3 () = 0 A1) = rEl®.

f: 8(t)e ot g4

then the response to & = sin wt. is g =R sin (wbt4p). The applice—
tion of the Fourier integral to the conversion of transient to fre—
quency response is discussed in references 2 and 3.

If, as in the case of a step or ramp input, the slope of the
output or input becomes essentially constant (and equal to DqT) when
t > T, the Fourier integral may be evaluated by the alternative sub-—
stitutions

- at = = b e—int gq — L= Dao, e—inT
(o] (o]
o 1aiT 10
® T Gpe” Dage T
—iwt ~iwt T T
e dt = € at + -
/; b /; ! i w2

where A is the value of q at t =T,

The transfer coefficients cen, of course, be obtained from the
frequency response by the methods of the previous section. An illus—
tration of the application of the Fourier transform to compute fre—
‘quency response from the step response of figure 4 is given in
table II. The assumed transfer function is slightly different from
that used in table I; hence a slightly different frequency response 1s
obtained. The frequency response obtained as an intermediate step in
the computation of transfer coefficients by this procedure is often
itself of interest in problems of automatic stabilization.

- The so~called "incomplete Fourier transforms" fg qe—10t 4t ana
fo 5e~10t gt can also be used to compute the parameters from a pulse
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which has not reached a steady state and for nonzero initial condi-—
tions. Assuming the transfer function

D+C
g _ J1q%*Coq
85 D2+bD+k

then it can be shown that
2 T it iw
[(iw) #bﬂnik]k/ﬁ gqe~ 10t gt 4+ - qy(DqT+qu+iqu) - Day — bay — iux,
0

T )
= <clq1w+coq> f se~iot gt + clque—iwt — C1g%0
(o]

from which a real and an imaginary equation can be set up. These can
be used to set up four simultaneous equations using computations at
two frequencies, to get approximaste values for b, k, Clq, and Coq.
If more than two frequencies are involved, then the method of least
squares can be used as 1n the case of frequency—response measurements.

(3) Derivative method.— Another method for computing the transfer
coefficients from the transient response consists in using the
measured values of a sufficient number of higher derivatives of input
and response in the assumed transfer function. For example, if the
assumed form of the transfer function is

D+C
g °g

it is possible to determine the parameters fr%m four sets of simulta—
neous measurements of 6, DB, D29, 5, and [o & dT by fitting the

equation
v
| g +bD9+k9—Clq8—Coqf 8ar = 0
. o
~ If the subscript 1 denotes the value of a quantity at t=t; etec.,

then four simultaneous equations for the parameters b, k, Clq, and
00q can be set up as follows:



t1

(D29)1 + B(DB)y + kO1 — C1931 — Cog 8dr = 0

6™

t2
(D28)> + b(DE)s + koo — Cigbz — coqf 8dT = 0
Q

ts
(D®8)g + B(DO)g + kOg — C1qBz — coqf 8dr = 0
(o]

Ty
(D29) 4 + B(DB), + kB, — C1qBy — coqf sdr
(o]

il
O

The parameters computed from the above equations can, of course, be used to compute a 9
response for a & Input which passes through the four given values of & and the integral

of which corresponds to the four given values of f o ddr. However, the transient 6 curve
s0 obtained will not necessarily pass through the four given values of 6, bDut the above
relation between D0 , D8, 6, B, and f o 94T will be exactly satisfied at the four points.

If it 1s desired to use more data (taken at more than four time instants) then the method
of least squares may be used to compute values of b, k, Clq , and Coq such that X Ej2 is a
minimum i

where

t1
E; = (D%0)1 + b(De)4 + k(6)1 — Cigd1 — coqf 8 ar
(o]

The normal equations are:

9T

OhEZ NI VOVN




t

i
zi (De)iab + z:i(De)i(e)ik - z;i(Da)i(zs)i Cig _>:i(1)e)-if saT coq = -zi: (1)9)1(1)26)i g
o
H
2 ti > =
z o) (e)p + = (6) k- x(0),(8), ¢, - ;(e)if 8aTCo = ~Z (8); (0%0);
1 i i q i o a i
Y
% (DO 2 ty
DO);(3);b + Z (8)3(8);k — % () Cig — = (8)y 841 Co, = — Z(8); (D%0);
i i i i o a i
5 t1 | By i 2 tg
Z(DG)J 8d T b +z(e)if sa-rk—z(a.)f AT Cy - = Sd’r> Co =—§_:f sdt (D%0).
i o i b A VA q i 2 1 *

An example of the application of the derivative method to the determination of the paranmeters
from the response @ s DO and D329 to a step Input in & 1is shown in figure 5, and worked out in
table ITI. For a step response the differential equation relating 9 and © is

D°0 + b D6 +k0 ~C, —Cot =0or E-
q q

and the normal equations resulting from the minimizing of X E2 are

2 2
v (De b +% (D6)4(8);k -z (DO);C; ~% (DO):t:C. = —% Do), (D%06),
1 ( )i 1 ( )'j_( )1 7 ( )1 lq i ( i¥i Oq i ( i i

[ 4 2
% (D6)3(8)d + 2(8);"k —Z(6); 6, — £06it; Cq = —5 D20). 6,
1 ( )i( )1 i( )1 i( )l ]_q 1 iv1 Oq i ( ivi
R - - -~ 2 .
zi (De)ib + ? (6); k N cl-q - ? tlcoq = >i (p%6)4
- - 2 = — 29).
? (De)i“tb + ? 6;t; k E ty Clq ;Ltl cOq 21: (p70);

where N 1is the number of time instants.

LT
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(4) Pronyts method.— Prony's method (reference 6) for fittirg
a sum of exponentials to a number of equally spaced ordinates may be
used to obtain the transfer coefficients from a step or impulse
response. In the case of a step it can be assumed that q can be
represented as a constant plus the sum of Vv exponentials

Aot Ayt

qQ=q + Alehlt + Age

+...Ave

and the values of q(t) at n equidistant instants A seconds
apart will satisfy a difference equation of the form

Umav)aT BV mpvg)a T ¢ ¢ ¢ B2GpA = O

where Qa, QpAs o+ = Oya indicate the value of q—q, at

t=A, 2A, . . ., WA, reapectively. The following set of
n-vV equations may be written:

A(v+1)A + Bydyp + o o - B30, = o
Lyps2)A T 8L (a)a + o = ¢ 82850 =0

*« & & ® @ & @& & & & & = & ® a 8 ¢ s u @

oA + avq(n_l)A+ . e e alq(H)A =0

If the value of q, 18 known, (i.e., if a practically steady
state has been resched) then the ebove equetions cen be solved
for the coefficients a; by the method of least squares (if n> 2v).
If the value of Qe 18 unknown (because a steady state has not
been reached at the end of the record), then the difference
equation may be written, calling

4=4q, at t =mA
Ymiy tOylpgyg * e ¢ e Balp = (o) + . o say +L)a, =8y,

This leads to a similar set of difference equations with the
additional unknown a, + 2 These also can be solved by the method
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of least squares (if n>2v) for the coefficients aj, from which,

of course, q ., is determined. The least squares solution for
n=v

the coefficients ay 1s determined by minimizing 2 E® vhere

The values of a4 are then used to form an algebraic equation
v V=1
X + a.v X + o e o al = O

the roots of which are related to A (the characteristic roots)
by

Knowing the Vv values of A the set of n equations

A A
qA=Ale)“1A+A2e2A+. . .Avexv
O, =4 By a, B, ANVA
n\
q'nA=Ale 1A+A26M2A+000AvenlvA

can be set up, and the method of least squares is used & second
time to determine the unknown coefficients A;. The transfer
function is now completely determined. To express it in terms
of the differential operator D, each term e t is replaced
by D/D-A, its Laplace transform multiplied by D, and the
resulting fractions are added, that is,

BD LAD L. A2
DA, Dk Dy
Cv DV + Cv_l Dv-l + o o @ Co

Qe +

)
]

v V-1
D"+ By, D +...BO
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where the coefficients By are fumctions of the »\ roots, whereas
the coefficlents C; eare functions of the coefficlents A; and of
the A roots.

A numerical example illustrating the application of Prony's
method to the response to a step input is shown in tables IV(a)
and IV(b). This example is based on the computed response shown
in figure 4. The form of transfer function for the pitch response
to elevator deflection is the seme as that assumed previously,
that 1s,

@ Gy, D +0Cq
&8 D +DPD+k

The values of q are tabulated at equal interwals of time A of
0.1 second, from +=0 to +%=1.0 second, and the solution is
carried out on the assumption that the steady—state value of g
is unknown.

The velues of b and k are determined in table IV(a); the
velues of Cpq and Co, are determined in teble IV (b). The

small velue obtained for the coefficlent of D® (0.47) (rather than
the zero theoretical value) is due to imperfect fit.

DISCUSSION

Comparison of Fourier Transform Method, Derivative Method,
and Prony's Method of Obtaining a First Approximation

The Fourier transform method appears to be very convenient, espe—
cially if a harmonic analyzer is awvailable, The derivative method does
not appear to be practical unless the necessary highker derivatives are
measured during the flight test. Although Prony's method is limited to
the case where the response 1s a sum of exponentials (the step response
is included), it can always be nsed with a pulse input by fitting the
free oscillations following the pulse. This determines the characteris—
tic roots of the system, or the transfer coefficlents in the denominator
of the transfer function. It is shown in reference 5 that once the
transfer coefficients of the denominator have been determined, the trans—
fer coefficients of the numerator of the transfer function can be com—
puted by a linear calculation. In the case of the response due to a step
input, the complete transfer function can be determined, as shown in the
example, but this is a special case,
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Determination of Lift Derivatives

It can be shown that, given a complete set of tranafer coefficients
(e.g., those corresponding to q/8 and «/8), the lift derivative L,

is given by:

b Gy, Coy = Cog Coy =k Cay C

q la "1g
C°q — Co,,

1lg

To _
Vg

Clm lq

c
Ir Ig 1is megligible this reduces to S = —24,
va Clq

The value of I, can also be determined from dynamic measurements
of a single response at two center—of—gravity positions as follows:

ee-lo Mg M
mVon Iy

Differentiating this with respect to x (assuming Iy and My
do not vary appreciably with x) gives

ak _ Iy
dx Iy
from which
dk
= o ——
Ly T

The ebove methods of determining Iy can be used no matter how
large the value of is, If L 1is smell enough, the value of L,
can be determined from static—stability measurements or from steady—
turn measurements. (See subsequent section entitled "Relation Between
Static and Dynamic Tests.")

Basglc Limitatlions in Determingtion of Moment Derivatives

Various methods of computing transfer coefficients and 1lift deriva—
tives are mentioned above; the computation of moment derivatives is not
explained. For the two degree of freedom caese discussed above, the
unique determination of the damping moment derivatives from the airplane
response to control deflections 1s impossible, as will now be shown.
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If a, Dx, q, O, and Dq are known at four different instants
of a translent disburbance, the moment equation can be used to form four
glmiltaneous linear equations for the determination of the four unknowns,
Mys Mpg, Mg and Mg. The coefficients of these unknowns are the
values of o, Do, g &and O at these instants. Unfortunately, these_
four values of o, Da, g and & are linearly dependent according to
the 1lift equation, which states that

oL, + Da mVg + 8Ly — q mVg = O

Therefore, the four simulteaneous equations formed to determine the
moment derivatives are linesrly dependent and, as shown in reference T,
canmnot be solved umiquely for the wnknowns. If the value of any one of
the moment derivatives is known frem other sources, then the values of
the other three may be uniquely determined from the flight measurements.
Otherwise, only combinations of the moment derivatives such as the
following can be evalusted from the flight data:

Mpo, + Mg
mVg My + Mg Iy
mVo My + Mé Iy
In practice, this indeterminacy prevents only the separation of the

damping derivatives in the Tirst of the above expressions, because they
are of the ssame order of magnitude, at least for most configuratlions.

F

The second. of the above expressions often may be consldered as
practically equal to mVy M,, for sufficiently high static margins,
eltitude, and wing loading. Thils can be more readily shown by taking
the ratio of mV M, to Mﬁlu which can be shown to be

VoMo, - 2ux
Mqu Cch
27

where

x = static margin
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For W/S; =100, ¢ =2, p/py = 0.53 (20,000 feet altitude), x = 0.2
of M.A.C., and Cmge = =15 (conventional configuration), the ratio is

2V
approximately 20. This means that the error in M, involved in
neglecting the My term in the expression mV M, + MyL, 1s 5 percent.

The last of the above expressions, namely mVoMg + MgLg, also can

be assumed equal to mVoMg to about 5 percent for conventional plan
forms, so that Mg may be known to about this accuracy.

If the tail length 1 defined as the distance from the airplane
center of gravity to the center of pressure due to & is known, then
Mg also can be found from Ly by the simple relation:

MS = -ZLS

This additional relation between the derivatives My and Ly makes
possible, in principle, the unique determination of all the derivatives;
however, in practice, the uncertainty (especially for unconventional
configurations) in the value of 1 and the low accuracy cf determining
Ly (for conventional configurations where Ls 1is almost negligible)
make the accuracy of the determination of the individual derivatives by
this method very much lower than that for the transfer coefficients or
combinations of derivatives.

The indeterminacy of the moment derivatives from control-response
data persists, in general, even when changes in forward speed are taken
into account. Measurements of airplane response in the three longitu—
dinal degrees of freedom (e.g., V, n, and q) to a known control deflec—
tion will yield wvalues of

Ly My — My Iy,

Ly Mg — My mv,

and so forth.

The derivative M;, a measure of the effect of alrspeed changes
alone on pitching moment, is caused primarily by power and Mach number
effects. In cases where this derivative can be assumed negligible,
measurements involving forward speed permit evaluation of all deriva-
tives. It is interesting to note that a simllar type of indeterminacy
exists in the lateral motions if product-of-inertia terms are present.
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Information Obtalined ¥From Tall Load Measurements

If the loads on the tall of a conventional-type alrplane are
measured during e maneuver, the value of downwash slope €, may be
inferred, provided the following assumption is mede:

Ly = aly,, (l—e“)+memte“1—r%+qu%Vio+aL5

By measuring the time histories of o (orn), 8, ¢ and Ly, and
knowing 1 and V,, the values of Ly , € , and Ly may be deter—
%t

mined using the same numsrical methods outlined sabove.
Use of Nonserodynsmic Forcing Functions

Tt has been shown above that the Indeterminascy that exists when the
response to a control deflection is measured would be overcome if the
location of the center of pressure of the 1lift due to control deflection
were knowvn. This immediately suggests a testing technigue in which the
force is appllied at a known position In the aireraft by, for example,
dropping a bomwb or firing a gun or Jet normal to the longltudinal axis,

If the known epplied lift L acts at a known distance 1! behind
the center of gravity, then the applied moment M is equal to —1I'L
and the equations of motion are

~aly Do mVg + qQ mVg = L
—aM,, Do Mp, ~q My +Dg Iy = -1'L
Solving these eguations for o and g glves

1 D Mq—z'mvo

+
9:= MV'O Iymvo
L PP+bD+k
t + t
_ Vpg +i'aVo Mg * 11y
g_._ I,.m'VQ IymVO
L PP +bD+k
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wvhere b and Xk are the same as before. The above transfer coeffi-
cients (determined by the methods of the earlier part of this report)
can obviously be broken down immedistely to give Mq and Mp,. The

determination of I, and M, Ifrom the transfer coefficients is also
feasible, glthough somewhat less straightforward.

If the bomb In the previous case 1s replaced by a gun firing
vertically, the same method of analysis applies. If the impulse supplied
by the gun is I (= mass of shell times muzzle velocity), the equations
of motion are:

—aL, — mV, Do + mVy g = ID

~aM, — Mp, Du — My ¢ + Iy Dg=1I 1'D

where 1° 1s now the distance between gun and center of gravity. It
is not necessary to know the value of the impulse I in order to
determine the derivatives ~ a fact which is of importance since the
impulse is not as easy to measure as the weight of the bomb in the
previous example.

Relstion Between Static and Dynamic Tests

In static or meneuvering stability tests, the rate of change of
trim with control deflection is measured. This is, of course, the ratio
of the constants in the transfer function. For example, the longitu—
dinal maneuvering stability is determined by the normal acceleration per
degree elevator deflection in a steady turn which is

<g_> _ Gon _ Vo(Myle Msle)
8/p=0 K  gluVeM, MyIy)

The varietion of this with center—of—gravity position is
4 (o __(n) &/
dx \ B o} k

The ratio
n/3 k
%(n /8) dk/dx
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is the distance between the center of gravity and maneuver point (i.e.,
the point where k=0).

If the angle—of-ettack change (as well as the normal acceleration
change) in a steady turn is megsured, we get

/E>D _ My mVy + Mg Ip _ Con
\5 0 My Iy My Vo k

The variation with center—of-gravity position is

dCq (:dk

(o4

k<:—-—:> - Co \ =
X

i(z)

The ratioc
o/

(a/3)

4
ax

does not accurately give the maneuver point unless Lg 1is negligible.
If Ly is not negligible, as for a tailless airplane, 1t is necessary
to measure Sﬁm at & number of center—of—gravity positions to deter—
mine the position for which &/a is zero, in order to find the
meneuver point. Thus, normal acceleration measurements enable a some—
what more convenient maneuver polint determination than angle-of-attack
measuremsnts. The ratio of n/6 to afd gives

__ Vo Myls — M5 Ig

g mVo My + My Ly

n
a

Tf Iy is negligible, this equals I,/mg. If ILg 1s not negligible,
it is not possible to determine L, from steady—turn measurements.

Tn static longitudinal-stability tegts the wvalues of V/5 and 1its
variation with center—of—gravity position gimilarly determine the
neutral-point position. It can be shown that

vV _ My Iy —Mls
5 (2MH/Vo) — My La
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and
Ve Mg W - My Ig T

L(v/s) i 2 W Iy

which 1is equal to the distance between the neutral point and the center
of gravity. The measurement of o/8 gives

8 o g — aVgl

G:=mVoM§+BJqL5

Just as in the case of steady turns, the walue of

a/8
d/dx (a/3)

does not quite give the neutral-point position unless Ly 1is negli-
glble. Measurement of V/5 and o/8 gives

V_ Lo My =My Iy
@ Ly My — My 2W/V,

If Iy 1is negligible, the above expression reduces to

‘lu Vb

2

but no static or steady-turn measurement at a single center—of-gravity
position can determine Iu or Ly 1f Ly is appreciable compared with

Ly
Aerodynamic Iag

The lag between aerodynamic forces and moments and angle of attack,
control deflection, or pitching velocity is variously labeled as:

Unsteady 1ift

Indicisl 1ift

Nonstationary or unstationary lift
Oscillating airfoll effect

Wagner effect
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The assumption was made above that the serodynamic forces are
represented by

L=a.Iu+8L5
M=ctM°,,+Dor,M-Dm+8Ma+q_Mll

These equations indicate that the lift due to a sudden change in control
deflection, angle of attack, or pitching deflection, and the pitching
moment due to control deflection or pitching velocity develop instan—
taneously. The lag in piltching moment due to angle of attack, supposedly
represented by Mpg, 18 obviously an approximation to the relation
between angle of attack and pitching moment due to the complex transient
downwash disturbance at the tail. Actually the 1ift due to sudden
changes In angle of attack, etc., lags somewhat behind the angle of
attack at first. The same effect can be expressed in terms of the fre-—
quency response of 1ift due to sinusoidal variation in angle of attack
and, therefore, is also referred to as the "oscillating airfoil" effect.

The aerodynemic lag effect can be expressed in a nunber of ways,
namely,

(1) The expressions for L and M given above require addi-
tional derivative terms on both sides of the egquatlion to take account
of the aerodynsmic lag. The correct expression for L, for example,
would be of the form:

(a, D" +a, D" +...8,D+1)L=
I(l+b;D+eeeby Do +Ig(l+c; D+o o CpD)B

where m and 1 are less than n.

(2) The relstion between an serodynamic force and alrplane motion
in a particular degree of freedom can be expressed as an "aeroiynamic
tranefer function" which can be described in terms of an "indicial 1ift
response” or an "oscilleting 1ift response.” The indicial 1lift response
1s the veriation of lift with time for step functlon displacements in
the particular degree of freedom. The osclllating 1ift response is the
amplitude end phase of the lift with respect to displacement for
sinusoidel motion in the particulasr degree of freedom as a function of
frequency.

The two methods of expressing serodynamic lag are, of course,
related by the fact that the expression glven under (1) is the rational
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Praction approximation to the "operational equivalent” of the indicial
11ft response mentioned under (2). This means that the indicial 1ift

response or oscillating 1lift response as calculated from (1) would be

the same as that defined in (2).

Tt is theoreticaelly impossible (in the most general case) to deter-
mine these unsteady 1lift functions from the response to control deflec—
tion alone, as pointed out above for the determination of moment
derivatives. Thelr lmportance in airplane meneuvers of the type dis-—
cussed in this report ls belleved to be small, however, except possibly
in the transonic speed range.

Suggestions for Future Work

It would be of great interest ‘to compute the exrror ratios of the
parameters involved in the longitudinal and lateral dynamic alrplane
responses, for various forcing functions and airplane configurations.
This would show what accuracy can be expected from various flight—
testing techniques. The problem of taking account of errors in measure—
ment of the forcing function (e.g., control engle deflection) remains
to be solved.

In applying the methods of this report it is necessary to assume
the form of the transfer function in sdvance. Further research is
desirable on & method of solution which would yield the form of the
transfer function as well as the values of the transfer coefficlentse.

CONCLUDING REMARKS

A mathematlcal study of the determination of dynamic airplane
parameters from flight measurements showed, &s would be expected, that
the determinability and accuracy of the parameters depend on meny
factors, such as type of input disturbance, the amount of response data,
and the method of analysis. The determination of stability derivatives
as distinet from transfer-functlion coefficients requires, in general, a
more complicated flight—testing technique. In the case of longitudinal
motions, for example, measurement of the response of the airplane to
elevator motions theoretically will not enable derivatives to be
uniquely determined; instead, the values of .linear combinations of pairs
are obtained. Practically, the statlc derivatives can be determined
with reasonable accuracy in masny cases. Measurement of the response to
a known force, as applied for exemple by a bomb drop or gun recoil,
yields additional date from which all the derivatives can be determined.

Application of these analysis methods and principles should assgist
in developing testing and..analysis techniques to satisfy the requirements
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s

of various specific research progrems. Most previous work concentrated
on sinusoidel control-deflectlion inputs or converted data from the
response to step or pulse inputs to frequency—response form for further
anelysis. Converslon of the transient response to the frequency
response is not the only way to analyze the data to determine dynamic
persmeters. Methods such as Prony's and the "derivative method" sre
alsgo avallshle. Prony's msthod, in particulsr, appears to be a slmple
end. dlrect method of determining the characterlstic roots from free—
oscillation data, and is also applicable to the response to & step input.

In the determination of the dynamic parameters from flight data a
retional least—squares procedure should be used to give the best £it to
redundant data. Application of this procedure also gives an evaluation
of the accuracy of a perameter, relative to that of the basic flight
data.

The methods of analysis presented in this report are applicable to
more complicated probiems than the ones used for illustratiomn. The
inclusion of additional degrees of freedom, and of additional higher—
order deriwatives to take accommt of umsteady 1ift effects is possible
by the methods of this report, and remains a fleld for future work.

Ames Aeronautical Laboratory,
Netional Advisory Committee for Aeromautics,
Moffett Field, Celif., Dec., 19, 1950.
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APPENDIX
Detalils of Calculation of Parameters From First Approximation

In the case where one transient response 1s measured (say q) the
equations for the increments in the parameters becoms:

4
Zsijxj=si i=l:2:3:h’
J=1
° axi ij o axi
where
Cag M#Coq . At pt Cig Ma*Coq At Pt —A_T
qc“—‘—ciq—l—-%gelf 5()e 1 ar + —d0 2 °do q°e2f 8(T)e 2 ar
Ag=ho 0 Az~ 0
A, and A, are the roots of A% + DA + kg = O
and
¢ 3
X3 = b-b, Po
Xp = k—kc kO
where ¢ > are the first approximation
= - C
g = O2g= Cag 9,
= - C C
x4 ch_ Oqo L Oqo ]

3
If A, and Ay, the conjugate complex roots, are equal to 1 & 11', then

& -1T
=S ' 1540, 1 sin 1't+C gin 7,'t> f 8(T)e cos 1'TdT-
d. 70 {(Clqoz cos-1 1q, R .

lThe symbols 1 and 1' wused in the appendix should not be confused with
those in the text.
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t
Ci. 1 cos ' + Co, cOS 1't —C,. 1'sin 2'% )/ 8(7)e sin 1'rdr

d
In order to obtain the required derivatives ?q:; and %91%,

o
first necessary to obtaln the derivatives He and He and then use
the expressions Ny Shp

it 18

3‘10=ch A1 +aqc .
db  O; Ag=A; Mz A-Ap

dq, ___aqc 1 +3qc 1
3k My Ap—r; g Mg

The values of the partisl derivetives are:

+ t
Cy Ay + T T
94y = 2002 020 [elat f 8( 'r)e—)\'2 at—ott f 5(7)6_}'1 d.-r]
Ohy (A3=22) o )

e

> = expression obtained by interchanging XA; and A, In above
2

t

"
Do o 2 Pt [ an)eMTar 4 L2 [ p(r)ee o
aclcl Ag=Ao o ) o

— t AT
ch ez'lt f: 8(t)e thdT e)"a j;t 5(Tle = dr
= ¥
acoq A1=Ao Ao—=hy

Where 9, dq, and Dq are measured in a transclent response, the
linearized equations for the increments become:

L
ZSiJXJ:Si 1=1,2,3, 4
3=
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s ) (e [ o [(E(E)
iJ‘We 3y /\3x;/ L\ Sz +qu 3x; / \3x,

T 36 T a 3
q Dq
—S1=wg f (0 —Bg) —= dtw, f (aa,) == dt+w f (Da,De,) —= at
0 ° dx4 1o “™m~e dx; Da Jo BT d3xy

X, =A4b X, = Ak X3 = AClq Xy = ACOq
where
Co t Cig Mo +Co, At At T Ciy Ay + C
q.2 [e)
B = —2 f 8(T)dT + —o0 do ot f 8(t)e T dr + —=2 2
k o Ay (Ag=hp) o Ms( )\,2—>\,1)

At t -A_T
e 2 f 5(t)e 2 4Tt

o

K
Q
I

C.'L >"l + CO t T Clq >\.2 + CQq t -\ T
T %o ehlt f 5(T)e it aT + ° 0 ghat f 8(T)e 2arT
)“1_)“2 o] >"2"'>"1 (o)

<clqoxl+coq0> A AT (Clq 2 * o > he
el 8(T)e "L ar +
(o]

Dg, = C,_ 8(%t) +
c 1q .

(o] >"1""2

t

+ —_
e>\'2 f 8(T)e MaT ar
o

or if A; and A, are the conjugate complex roots equal to 1 % i1t
then

it
e
e — — H H 3 | 4 * ?
P TR K Coqol cos 1't + Coqol sin 1%t + Clqok sin 1 t) cC +

<—Cl k cos 't —Cy 1 cos 1% —Cy_ 1'sin Z't)D:,+
q‘O 90 90
B C t

Oqo
—k—f (1) dat
Q
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it

=§-—— t t
q, [(Clq-o tt cos 1'% + Cy

1 8in 1"t +C5. sin 1'% } C -
1t 90

99

@1 1 cos 1%% +C,  cos 1'% —C; 1! sin Z”c)D]
4 40

O

1t
Dq, = E‘z_' [2 Clqoll'cos 1'% + Gy ¥ cos 1'% +<01q012 *Coq l
O

C, Z'2> sin l't] C+ [( 2C, 1l' +Co Z‘) sin 1% © +
q.o q"0 q.0

C; 12 —-Co 1-0Cy 12) cos 'L't:l D} +C 8(t)
< q‘O 95 9o lqo

where
t

- t -lT
¢ = f 8(7)e 1T cos 1'TdT and D =f 5(t)e sin I'TdT
o )

If the frequency response q = R sin {(wt+® } to & = sinwt is
measured, the equations for the increments in b, Kk, Clq ; and C, over
q

the first spproximation are denoted by:
A

——

2_‘ Sijx{] = Si i=1,2, 3, L

a3 @) I &
“’RZ(RM R) +cnq,Z(qu %)acp

where the summation is to be taken over the frequencles.

I bow
coq- 2 Clq 2 ,2 Coq_ kO - (1)2
RG = 2 0 and tan q)c =
2 2 C; b
(k=) + by @ e o
co ko )
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and

(-coqoz - 01q02”2> W b

= Z
% R Kko—wg> + b ? w2—’ =
<‘°°q i 2) <k° “’2>

aRc
ok [ (ko__wa) o ]
Re _ Coqo

Co [:(k—wz) +b2m2J

aRC _ (‘)2 cl‘lo
1 _ T T
—w2)? 2
R, [(ko w2)* + bo me]

2 us8 2 2 L} 5
aCP.;; o (co‘lo © _co‘lo ko _Clqo k™ + C1‘102 © )
—a;- = COS Pe >

- 2
<c°qo ko Coqo w* +C 1q, by w2>

Co. 2 b, w8 +C, 2
30 _ gos2 g <°g<L 0 ¥”* "o, Po "')
dx ¢ <Coq ko — Coq W2 +Cy  bo w2\ Z

0 o) o)
a% cos2 (Clqo ko w Clq bo2 WS - Clq ko2 w —Clq W= 4+ Clq_ kO w3>
~ Pc — —
dCo Co. ko =0Co w2 +C, bom22

do 40
Cc ka2 w—-2¢ wS wS 2 w3

a& - cos? 0 < Oqo O 0q° ko + COqo + COqo bo
X1 c

O k,—=Cn @ +C3 b, w2\
<oqoo Oqo 1q°o>
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TABIE I.— IEAST SQUARES CALCUTATION OF FIRST APPROXIMATION TO TRANSFER
COEFFICIENTS FROM FREQUENCY RESPONSE IN PITCHING

1 ]2 3 3 5 6 T 8 9 10 11 12 13 1k 15 16 17
Row | ® R ) sing [Je1:10 ] 5 s:;.ntp R cxs¢= Aa ABn Bo Bzma a)z Azm2 an ]?«1)3 B2
(deg)

1 | 1| 8.8587 | 184.8|-0.06662|-0,99778{ -0.5902 |- 8.8390 78.1279 5.2168 ~0.5902 0.3483k | 1 78.1279 -8.839% -0.5902 0.3483%
2 | 2 [10,0221 | 183.h} —.05878| —.99827| —.5890 |[-10.0038 | 100.0760 11.7845 -1.1780 1.38768 | & 4%00.30k 40,0152 ~h.712 .34602
3 | 3 |11.3560 | 177.8| .0384T| —.99926 4369 |-11.3476 | 128.7680 —14.8733 1.3107 1.71793 | 9 |1158.912 -102.1284 11.7963 .19088
LT 12,2791 168.7| .195k3 | —.98072| 2.3997 |-i2.0k2k | 145.019% | -1315.5926 9.5988 92,1370 | 16 | 2320.3L -192.678% 153.5808 5.75856
5 | 5 |12.4966 | 158.%| .36748| ~.93003 | %.5923 |-11.6222 | 135.0755 | —265.8631 22,96k 527.230 25 | 3376.888 ~£90.555 574.0375 | 21.08922
6 | 6 [12.0825 | 148.8 51818 | —.85527 6.2609 |-10.3338 | 106.787% | —388,1933 32,5654 1411.16 36 3844346 -372.0168 1352.354 39.19887
7 | 7 |11.3058 | 140.6| .63500 | —.77250| 7.1792 |- 8.7338 | T6.2793 | -u38.o119 | SO.25Wh | 2525.50 49 |3737.686 | -her.osee | euse.ky 51.54091
8 | 8 |10.k232 | 133.9| .72007| ~.69390| 7.505% |- 7.2327 52,3119 | -434.27h5 60.0432 3605.19 64 | 3347.962 | — k62.8928 3842.76 56.33103
9 | 9| 9.5580 | 128.6] .78119| —.62429| T.4673 |- 5.9675 35.6111 | —401.0500 67.2057 4516.61 8. | 288hk.499 | — 483.36T5 543,662 55.76057
10 {10] 8.7672 | 12k.k 82551 —-.56439|  7.2373 | — L.9h8L 2k, 4837 | ~358.1088 T2.3730 5257.85 100 | 2uk8.37 - 4ok 810 7237.30 52.3785
1 = -91.0709 | 882.5402 | -2400.8662 | 3Lk.5845 | 17919.13 38  {23597.40 -2875.259 21072.66 282.9438

Real Equation of Condition

Bo b — Ak + Go +

=

Tmaginary Equation of Condition
Aod + Bk —afy; -Ba = Ep

Normel Equations Obtalned by Minimlzing & ER2 +3 E12 .

[E@ +2®]b + z@coq_ E@c,_q= ()
E@+z@r - zcoq— I@oy- 2@ +:@
@ b - @k + 1. Cog =0
@ v+ @k - 2@y - =@
3516.53 b + 31h.5445 coq + 2875.259 Cig= O
1165.48F x + 91.0709 Coq = 3155 0 = 4151653
314585 b +  91.0709 k + 10. coq = 2875.259
— 2875.259 b 4+ 31%.5445 k -~ 385. Cig =  21072.66
b=8.,048 k=28.616 c°q=-226 .2 (Y q=-91.h6

oh€e NI VOVN

LE




TABIE II.,— APPLICATION OF FOURIER TRANSFORM TO CONVERT THE RESPONSE TO
A STEP INPUT INTO THE FREQUENCY RESPONSE

gt

1| 2 3| & 5 3 7 8 9 0 n | 1 13 1Y 1% 16 17 18 19 20 a o2 a3 2% 25 26 2 28 29 30

Row| t q/s| 2t ! 3t | k] st 6¢ Tt 8t 9t | 10t lin@ -!n@ lln@ lln('l) l um@ win @ =in @ 2in @ ga.@ cos @ eo.@ cos @ cos cn@ cos @ con @ cos (¥
1o -0.08l0 [o fo ) [ ) [ o o |o 0 [ [} [} 0 [ [ 0 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 [ 1.c0000 | 2.00000 | 1.00000
2|l a| 108 2| 3| H4F 5| 6 .7 .8 9 | 20| .19867 | .295%2 | .3%ou2 | .7ok3 | .meuse | .Gwhz2 | J7Ta736 | 78333 | .BMakT | L0moo7 | .omeau | .omw6 | .67ree | .Bossh | teew | .Gofma | 62161 | .swom
3| 202 & | 6| B8] 1012 [1.4] 26] 1.8 | 2.0| .380k2 | (S6%62 | L7736 [ JOWNT | 93208 | .98 | 99057 | .o7385 | 90930 | .92106 | .82%3% | .6o671 | .sko3o | .36236 | .26997 | —.02920 | —.2220 |—-Ma625
) 3|-n.s4) 6] 9 11,2]|2.5] 1.8 |21 | 28] 27 ] 3.0] .o6462 | 78333 | .93204 | .9o7ho | .97385 | .B6321 | .675H6 | k2738 k02 | .gas3e | L6260 | .36236 | .o707h | -.e2720 | —.%0u85 | —.73739 | —.90407 | —.0B099
5| u|-n38| 812 ]|2.6) 20| 2% |28 3.2] 3.6 | ho| .T2736 | .9320% 99957 | .90930 | 6746 [ .33490 | —.05837 | ~.hh202 | 75680 | 69671 | .36236 | ~.02020 | —.ha6M5 | —73739 | ~.9%2e2 | —.90820 | —.89676 | -.6336%
6{ -5/-20.88({ 1.0 [1.5 |2.0] 25] 3.0 | 3.5 ko | k5| 5.0| BT 99749 | .909%0 <5857 g | - ~-.75680 | —.97153 | —.95802 B30 | 0707k | ~ M85 | —.8013K | ...98009 | —.936k6 | —.6536% | ~.22080 | 28366
7| -6|-20.24) 1.2 |28 |2k] 3.0 3.6 | k.2 | %8| 5.4 | 6.0| .9320h | 97385 | 67946 [ .IhN2 | —.kk252 | =.BT258 | —.90616 | —77276 | —.2mok2 | .36236 |-.2ev20 | —.73739 | - —.89676 | —49026 | 08750 | 63469 | 96017
8 .7| ~9.66| 1.4 f2,2 |28 3.5 %2 | %9 | 6] 63 | 7.0| 0855 | 86321 | 33499 | ~.3%078 | —.87258 | —.982h5 | —.63127 | .01681 | .65699 16997 | —.50M85 | —.ok222 | —,03646 | -.ko026 | .18651 TI55T | 99986 | 79390
of 8] 29.18{1% |28 [3.2]| %o| 4B ) 5.6 | 64| 7.2 | B0) .o99o7 | 67946 | 05837 | 79680 [ ~.096106 | —.6me7 | w1659 | .70367 | .9@936 | —oege0 |-.7739 | —w99829 { —.6036% | .087m0 | .77a57 | .o9ms | .e0B35 | -.ansmo
0| 9| -B.90} 2.8 |27 | 3.6 55| Bk | 6.3 ] 7.21 81 | 9.0| 97385 | .h2738 | ~hhas2 | ~97753 | 77276 | 01681 { 79367 ( .96089 | .M212 | ~,2z720 |-.00h0T | ~.89676 | —.21080 | 63469 | .99986 | .60B35 | —, 2433k | —.91113
1 (20| -8.79| 2.0 |3.0 [ 0| 3.0} 60 [ 7.0 | 8.0 9.0 [20.0] .90930 [ .1k112 | ~.75680 | ~.95892 | ~.270M2 | .65600 | .98936 | .Mame | _.5Wh02 | —h16)5 |~ —.6536h | 28366 | .¢c017 75390 | —.avs50 | —.oan23 | ~.63007
12 |1.1) -8.70f 2.2 | 3.3 | %4 | 55| 6.6 | 7.7 | 8.8] 9.9 |11.0| .808%0 |-—.2977h | —95260 | 70554 | L3054 | 98827 | 58402 | —.A575% | —.99999 | —.588%0 |-.98748 | —.30733 | .70867 | .9%023 | .15337 | —.81109 | ~.B8910 | .cOM26
13 [1.2] 871 24 | 3.6 { %8| 60| 7.2 | B4 | 9.6] 20.8 |22.0) 6736 | —.hhas2 | —.09616 | —.270k2 | 79367 | .Bh60 | —.17h33 | ~.90093 | 53657 | 73739 |—-89676 | 08770 | .ge017 | o835 | - | ~.o8460 | —.29633 | .B%305
1 [1.3] -873) 2.6 | 3.9 5.2} 65| 7.8 | 9.2 [30m [ 207 |13.0| .oamo |-eorrr | -eestr | .mma | .oomss | .misi0 | -.geres | —qmse [ eorr | —msems |-emes | .avees | oveme | .osaes |—.ovre | —seose | .eve | .ooms
15 |1.%]| -8.77| 2.8 | k.2 ] 5.6| 10| 8.4 | 9.8 |12.2 ]| 12.6 |2k.0] .33499 | -.B7288 | - 63127 65699 85460 | —.36648 | ~.97928 | .03362 | .99061 | -.g2ze |-.k9026 | JTTSST 75390 | —.51920 [ —-.93043 | .20%00 | .999%3 13674
16 |1.5) -8.19) 3.0 [%.5 | 6.0 | 7.5) 9.0 [20.5 |12.0 | 23.5 [as.0| .12 | -97753 | —2orok2 | 93800 | Jam2 | ~.B7970 | ~.53637 | 80379 | 63029 | —.0B0g0 |-.21080 | .96017 | .3w66k |—.01m13 | ~.h7msh | .8M3BS | .moho2 | ~.7i969
17 |2.6] -B.77] 3.2 | B | 6. | 80| 9.6 [12.2 ]12.8 | 2k |26.0 [ —.05837 | ~.00606 | 116551 98936 | —.27433 | ~.9T9AB | .2n1m | .96966 | -.28790 | —,90829 087% 299318 | ~.1k8%50 | —. 20300 { 97283 ~, —-.95766
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Simpaon Susmation « ) (no. from colum ) x (corresponding Simpscn's factar fram column %9)

t=0

¥ 14 - ¥ *
=
2
=
N
TABLE II, — CONCLUDED w
5
N 2 3 32 3 3 35 36 37 38 39 L] 4 42 43 L1 45 46 ¥ %8 49
. ool oe|0e 0o 00 |ee |08 |06 |0e |00 (06 |0 |oe e oe |oe |oe |im="
1 0 o ] [ 0 ] [ ] L] [ -0,08000 | ~0.08000 | —0,08000 | -0.08000 | -0.08000 | —0.08000 | -0.08000 | —0.08000 [ -0.08000 1
2 1 -1.50062 | -2.08342 | ~2.7h5%1 [ -3.37998 | -3.98057 | -%.5M75 | —5.05739 | ~5.52248 | -5.93236 | —6.909%9 | —6.73515 | -6.h93u7 | —6.1869% | -5.81865 | —5.39212 | ~4.91181 | ~%.38235 | -3.80912 s
3 2 —4.05776 -5.8833% | ~7.47489 | -B.76816 | -9.71186 | -10.26839 [-10.M1552 |-10.14752 | ~9.47ThoL | -9.59745 | -8.60004 | —7.25972 | —5-62093 | —3.T1579 | -1.7T09 30426 2.36Th2 %.33628 2
» 3 —6.51571 -9.03963 | ~10.7357h | -11.31003 | —31.23023 | -9.9614k | -7.79481 | —4.93197 | —1.62852 | -g9.52k2 | —7.17338 | —4.18163 ~.81634 2.62189 5.82507 8.50048 | 10.43297 | 11.42uM8 4
5 R -8.23529 | -20.69982 | -11.47506 { ~10.43B76 | ~7.75428 | —3.84560 67009 5.08013 8.68806 | —7.99823 | -4.15989 .33522 kTR0 8.h6524 10.81669 | 11.h6037 | 10.29480 7.50379 2
6 S ~9.15519 | -10.85269 | -9.89318 | —6.51135| -1.53539 3.81649 8.23398 | 10.63553 | 10.43305 | —5.878% | —.76965 | k.5277) 8.m6%w | 10.77209 | 20.18868 | 7.11160 2.29350 | -3.08622 Y
7 6 —5.54%09 | -9.97222 | -6.91671 | -a.Mso7 |  k.53ho | B.92498 | 10.20068 | 7.91306 | 2.86126 | —3.71057 2.32653 | 7.55087 | 10,3745 | 9.18282 | 5.02026 | —.89600 | —6.h9923 | —9.832% 2
8 T -9.51945 —B8.33861 | —3.23600 3.38853 R.l1gk6 9.k90kT 6.09807 | —.16238 | -6.3%652 | -1.64191 4.87635 9.20184 9.04620 b.73592 | -1.80169 | ~7.49201 | —9.65865 | -7.28267 %
9 8 -9.17605 —6.20072 25358k [ 6.94Th2 9.14475 5.79506 | -1.06993 | —7.28589 | -9.08232 26806 6.7692% 9.16430 6.00042 —80325 | ~7.1973 | ~9.11739 | —5.98465 1.33569 2
10 9 -8.66727 -3.80368 3.93643 8.70002 6.87756 ~.h961 | -7.06366 | —8.63202 | —3.667187 | 2.02208 8.0k622 7.98116 1.87612 | -5.64674 | —8.89875 | ~5.h1832 2.1675L 8.10906 L
n 1,0 =1.99275 —1.2%044 6.65227 8.42891 2.45610 | —5.7Th9% | -8.69687 | —3.62253 L.78194 [ 3.65796 8.70201 5.7855 | ~2.49337 | —8.43980 | —6.62618 1.27895 8.00883 7.31543 2
2 1.1 -7.03395 1.37233 8.27892 6.13620 | ~2.m080 | -8.59708 | ~5.08880 | 3.98060 8.69991 ! 5.11995 8.59108 2.673717 | —6.16543 | —8.26700 | -1.33k32 7.05648 7.73395 —.03706 %
13 1.2 —5.88326 3.85435 | 8.67655 | 2.43375| -6.91287 | -7.84357 15184 | 8.54390 | u.67352 ; 6.u2267 | 7.81018 | -.76233 | -8.36308 | ~5.29873 | h.ve302 | 8.%7665 | 1.60261 | ~7.3%993 2
h13 1.3 -4.50032 6.00423 8.08232 | -1.87800) -8.71725 | -2.785Th T.22696 6.65209 | —3.66808  7.h8065 6.33737 | ~3.29977 | -8.52563 -~ 7107 8.27360 %.89736 | —5.65355 { ~7.9220% Y
15 b ~2.93786 T.64376 5.5362h | -5.76180 | —7.kgh8k 3.21403 8.56741 | —.20485 —8.68165,' 8.26327 b.29938 | -6.80175 | —6.61370 L5507 8.15687 | -1.7003t | -8.76%00 | -1.19921 2
16 1.5 —1.2h0%4 8.59249 2.45600 | -8.2u502| -3.62253 T.132%6 71645 | ~7.06531 | =5.71605 i 8.70201 1.85293 | -8.4398 | —3.04697 8.00883 k.18000 | —7.Ma7uk | —5.22935 6.67768 %
17 1.6 451190 8.73632 | -1.0220% | -8.67660 1.52887 8,507k | —2.03034 | -8.%688% -2.52'068. 8.75500 —1673: | -8.72019 1.27604 8.63573 | -1.78031 | -B.53172 2,27862 8.39868 1
_18 Simpacn Summatlon|-287.27402 | -108.856k6 | -25.45190 | -79.07855| —95.98573 | —32.59403 %.64200 -aa.moo___.;ul.zamej_ 76806 | 93.55412 | 1k.63327 |-23.5799% ko.0%311 68.30965 | 20.39870 | ~3.94770 28.9559%
1o 3‘6 X row 18 —9.57580  -3.62855  —.848k0  —2.63995 -3.19952  —1.08647 ASWTE —-.9N267  -1.37T537 02560 3.11847 XBTIB —. 70600 1.33510  2.7009 61996 —.13150 9520
20 'S 2 3 % 5 6 7 8 9 10 2 3 L 5 & T 8 9 10
122 @ X row 19 -19.15160  -10.88562  -3.39360 -13.17975 -19.19712  -7.60529 1.237192 -8.48403 ~13.75370 05120 9.395%1 1.95112  —3.93000 8.01060  15.93893 5.53968  -1.18431 9.65200
22 cosine 1.6w -.99829 08750 99318 -ak550  —.9Bheg -20300 91826 ~.25978  —.93767 -.05837 —.99616 11655 98936 17433 -.97918 23151 96566  —.28790 sin 1.60
23 8.77 x row 22 -8.75500 76738 8.711009  -1.27608  -B.63573 1.78031 8.51916 -~2.21821  -8.39877 S1%0 -8.73632 1,022k 8.67669  -1.52887  -8.567h1 2.0303% 8.4688%  -2.52488 8,77 x row 22
In Phase A Out of Phase B
row 21-row 23 | —10.3966 —11.6530 -12,103  -11.9037  -10.561% —9.38%6 -7.312  -6,2058 -5.3549 ~.4607 -6190 2.9733 k7467 6.4817 T.3515 T.4700 T.2845 7.1271
L6

By Simpsrm's mle the integral of columm _ is given by 3-% timen the Bhlplon"u Summtion.
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TABIE IIT.—

IEAST-SQUARES DETERMINATION OF FIRST APPROXIMATION TO TRANSFER
COEFFICIENTS FROM THE RESPONSE TO A UNIT STEP INPUT USING DERIVATIVE METHOD

1| 2 3 L3 5 6 7 8 9 10 1 12 13 14
<}—— Given Data 1—>

ow | + o be | T ® | ®x0|0x0|0x0! 6 |0x0| 0x0| @23
1| o "] -0.08| -—8o0.,0 0.006% 0 3} 6.400 o [o] [¢] o] [

2] 2 -h32) -r.05) -46.8 49,7025 3.04560 -.705 | 329.9k0 .18662k {  —.0u32 20.2176 o1 —%.68
3] .2 | —.206]|10.52| -20.0 | 108.5764+ | 13.50k32 | —2.084% | 208.%00 1.679616 | —.2592 25.9200 .ok} k.00
4 .3 | —2.556| -11.54 4.5 | 133.1716 | 28.3k224 | —3.462 51.930 6.031936 | —.7368 11.0520 09 -1.35
5 4 | -3.640| -11.48 k0 | 131.790% | h1.78720 | —h.592 | —45.920 13.249600 | —L.4560 | ~14.5600 16| 1.60
6] .5 | —4.736|-10.88 7.4 | 118.3784 | 51.52768 | -5.440 | -80.512 22.429606 | —2.3680 | -35.046% 251 3.70
7{ .6 | -5.160|-10.24 6.9 | 104.8576 | 58.98240 | —6.14% | —70.656 33.177600 | —3.4560 | =39.74k0 36|  hab
8l .1} -6.10| —9.66 5.0 93.3156 | 65.20500 | —6.762 | —48.300 45.562500 | —%.7250 | —33.7500 49l 3.50
9| .8 | —r.60| —-9.18 3.5 84,2724 | 70.59%20 | ~T7.34k | —32.130 59.136100 | —6.1520 | -26.9150 .64 2.80
10 9 | ~8.600] —8.90 2.2 79.2100 | 76.54000 | -8.000 | ~19.580 73.960000 | ~7.7h00 | -18.9200 81|  1.98
11| 1.0 | ~9.500| -8.79 1.0 77.2641 | 83.50500 | ~8.790 ~8.790 90.250000 | ~9.5000 -9.5000 | 1.00| 1.00
2] 5.5 |-50.86 | -98.22]-131.3 960.541% | %93.0336% | -53.333 | 290.782 - | 345.663672 | ~36.4362 |-121.2458 3.'85 8.69

Equation of Condition: D028 + bDO + kf — C;q - c°q, =B

Normal Equations Obtained by Minimizing X ool

@b+ z@k—z@clq— zcoq=—z@
@Dv+ O k—z@clq— 1@ coq=-=@
—=® b - E@k+ Lo+ 2@) Cop = 45 ©
2@ 1v- @D k+2@ g+ 20 Cop - =D
980.5k1% b + 493.03364 k + 98.220y + 53.333Coq = ~290.762
493.0336% + 345.663672k + 50.8602y + 36.4362Co, = 121.2458
98.22 b+ 50.86 k+ n Ciq + 55 Cog =—131.30

53.333 b+ 36.4362 k+ 5.5Ciq + 3.85 Coy = B.69

b = 7.9%1 k=29.22 G =-90.3L Gog = —255.3

ohte NI VOVN
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TABIE IV.—~ APPLICATION OF PRONY'S METHOD TO THE RESPONSE TO A STEP INPUT.

(a) Computetion of b and k.

1 2 3 L 5 6 7 8 9 10
n % m Qmsl Omee G |(@x®| @x6 ®* ® x O
1 0 ~0.08 ~T7.05 ~10.42 0.006% 0.5640 0.8336 4g.7025 73.4610
2 .1 ~7.05 -10.42 1154 k9. 7025 73.4610 61.3570 108.576% 120.2458
3 .2 ~10.h2 —21.5h4 ~11.%8 | 108.576k | 120.2468 | 119.6216 133.1716 132.4792
k 3 -11.54 -11.48 ~30.88 | 133.1716 | 132.4792 | 125.5552 131.790% 12k,9024
5 o -11.k8 -10.88 -10.24 } 131,790k | 22h.g02%k | 117.5552 118, 3744 M1 k112
6 5 -10.88 —30.2h —9.66 | 118.37%4 | 1a1.hm12 | 105.1008 10%,8576 98.9184
T .6 ~10.24 —9.66 —9.18 | 10%.8576 98.9184 9k.0032 93.3256 88,6788
8 T ~5.66 -5.18 -8.90 93.3156 88,6788 85.9740 8k, 2724 81.7020
g .8 -9.18 -8.90 -8.79 8L, 2724 81.7020 80.6922 79.2100 78,2310
10 9 ~8.90 ~B8.79
1 1.0 -8.79
A B -80.53 | -89.35 -91.09 | 824.0673 | 832.3638 | 810.6928 903.2709 910.0308
t=0

Equation of Condition: 21 gy + 8z Gy + 83 + QGpip = E
Normal Equetions 2 @+ Pa+ z G ag =-= 824.0673 &) + 632.3630 a2 — 80.53 a, = ~810.6926
Obtained by Min— 2 Qe+ @ez+ 5@ ag =—5 @ 832,361 a5 + 903.2709 a2 —~ 89.35 ea = -910.0308
imizing ZE®
2 Qa+I®a+ 2@ e =-2O 6053 8- 8.3 e+ 9 8s= 9109

o.M 8y = 0432127 & =-1.227683 &, = 1.799523
Iet x=0" then x2 4 a2x + 83 =0

+,
Solution for x = xy * ixs = 0.61382 + 0,23521kt = Re 1% = 0.65736L &0 005581

b= —{(h2 +r2)=—

log Rel® 4+ log Re™#® _ _10g R __ log & _ 108 (o.Eaglz' 1)= 8.3504
0.1 0.1 0.1 0.1

1og Relf)(1og Re16) . (1og R)® + & o (10g 0.65736? + {0.36558)2
Ol 0.01 0.0l

k = Ah2 = ( = +30.9643

Equation for A =1 44l A2 +bh +k =0

A o= —U,1940 * 3.66181 then I = —k.19k9

It = 3.6618
In additiom

Qo = = ——a2 = -8.80203%
a; +az +1




TABLE IV.— CONCLUDED

(b) Computation of Cy, and Cog.

1 2 3 s 5 6 7 8 9 10 1 12 13 1k
t::g"ez 1t e—it @x@ 1t sin@ cos@ 2 2 x@ .x@ @x@
1 ]o 8.72 0 1.00000 8.72 0 o 1.00000 | © 1.00000 | 0 ] 8.72
2 Al 175 41949 1.52120 2.66210 +36618 «35080% +93371 .128193 .87181%]  .334306) 953138 2.485629
3 2]-.62 —.83898 2.31505 —3.74876 .73236 66861, .T4361 L7039 .552056] JA9T185] —2.506458 ~2.787615
13 3| 2.7k -1.25847 3.5201% -9.64518 1.0985% -89053 45492 .T93044 .206952| .h05120} -8.589322 -%.387785
5 4] -2.68 ~1.67796 5.3548% | -1k.35097 1.h6k72 99437 .10592 988772 011219}  .105324|~1k%.27017h =1.520055
6 5| —=2.08 —2.09745 8.14578 | -16.9k3022 1.83090 96638 ~.25713 .933890 .066116| ~.248485|-16.373589 4.356610
T NI EuR ~2.5169% 12.39137 | -27.8k357 2.19708 .81025 —.58;509 656505 .343501| —.ATh879| ~1%. 457753 10.457938
8 7} —.86 ~2.93643 18.8k033 | —16.20268 2.56326 54669 —.83734 298870 .701138| —~.U57765| ~8.857843 13.56T152
9 8] - -3.35592 28.64560 | —10.88533 2.9294% 21064 -.97756 -0kh369 .955624} —.205913| —2.292886 10.641063
10 9| ~.10 ~3.775%1 43.59751 ~4.39575 3.29562 | -.15333 ~.98817 023510 976480| 151516 674000 L.343748
11 | 10| .01 ~4.19490 66.35373 66354 3.66180 | ~.ho705 ~.86TT2 247059 .752038| .k31300| ~.329813 —-.575767
12 | = 4561251 | 6.438738] .537709|-66.050T00 45.300918
Equation of Condition q - Qw =~ e’' (Msin 2"t +Ncosl't) =B
Normel Equations s@u+ = ®r-:=0 4.561251 M +0.537709N = ~66.0507
Obtained by Minimizing SE2 0-537709 M + 6438738N = 145.300018
c:@u+z2@r=-:@ ¥ = —15.4625 N = 8.3270
Response Equation q = ~8.802 + e~4195t (-15.46 sin 3.662t + 8.327 cos 3.662t)

Laplace Transform of e <185b gin 3,662t = Fif_ss —
Laplace Transform of e-4 1856 cos 3.662t = g I ll-.lgi

a 3.662D p(D + b.195)
fer Functlon of = = ~8. -15. .
Trensfer Functlon of & = ~8.802 1346 ot 3096 * C3 37 + 8.3 + 20.96

_ =0.47D — 91.5hD — 258.%
B D2 + 8,39D + 30.96

Caq = ~9L.54 Cog = 2585k
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Figure .- Frequency response of pitching velocity of example airplane to sinusoidal elevator
oscillations.
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Figure 2.- Illustration of fransient response fo elevator pulse .
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Figure 4.~ Typical aircraft pifching velocily response fto step elevator input.
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Figure 5.— The airplane response in angle of pifch, pifching
velocity, and pitching acceleration to a unit step elevator

input.
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